Multifunctional Visible‐Light Powered Micromotors Based on Semiconducting Sulfur‐ and Nitrogen‐Containing Donor–Acceptor Polymer

Kochergin, Y. S.; Villa, K.; Kulkarni, R.; Novotný, F.; Plutnar, J.; Bojdys, M. J., Pumera,* M. Adv. Funct. Mater. 2020, 30, 2002701. DOI: 10.1002/adfm.202002701 [OPEN ACCESS]

Photosensitive micromotors that can be remotely controlled by visible light irradiation demonstrate great potential in biomedical and environmental applications. To date, a vast number of light‐driven micromotors are mainly composed from costly heavy and precious metal‐containing multicomponent systems, that limit the modularity of chemical and physical properties of these materials. Herein, a highly efficient photocatalytic micromotors based exclusively on a purely organic polymer framework—semiconducting sulfur‐ and nitrogen‐containing donor–acceptor polymer, is presented. Thanks to precisely tuned molecular architecture, this material has the ability to absorb visible light due to a conveniently situated energy gap. In addition, the donor‐acceptor dyads within the polymer backbone ensure efficient photoexcited charge separation. Hence, these polymer‐based micromotors can move in aqueous solutions under visible light illumination via a self‐diffusiophoresis mechanism. Moreover, these micromachines can degrade toxic organic pollutants and respond to an increase in acidity of aqueous environments by instantaneous colour change. The combination of autonomous motility and intrinsic fluorescence enables these organic micromotors to be used as colorimetric and optical sensors for monitoring of the environmental aqueous acidity. The current findings open new pathways toward the design of organic polymer‐based micromotors with tuneable band gap architecture for fabrication of self‐propelled microsensors for environmental control and remediation applications.

DOI: 10.1002/adfm.202002701

ERC Proof of Concept 2020 goes to @bojdysLAB

Maximum capacities at the theoretical limit come from Adlershof

On April 27, the European Research Council (ERC) announces the recipients of the Proof of Concept (PoC) Grant scheme: one of them is Michael J. Bojdys, materials chemist and junior research group leader at IRIS Adlershof and the department of chemistry of Humboldt-Universität zu Berlin. This makes Bojdys one of the first two ERC PoC grantees in Berlin since the grant was established in 2018. This year’s second recipient is from the TU Berlin.

Proof of Concept Grants are exclusively awarded to researchers who already hold an ERC Grant and wish to move the output of their research towards the initial steps of pre-commercialisation.

In the course of his ERC PoC Grant “Ultra-high energy storage Li-anode materials” (LiAnMAT) Michael Bojdys will develop together with VARTA Micro Innovation GmbH and the Adlershof start-up INURU GmbH, Li anode materials for high capacity applications. First promising results are part of a patent application of HU Berlin and the start-up incubator Humboldt Innovation GmbH: the capacity of the novel anodes exceeds that of commercially available anodes by a factor of 10-40.

[Press-release @hu-berlin.de]

[Press-release @berlin-university-alliance.de]

„Die Wissenschaft bleibt nicht stehen“

Unendliche Weiten, Faszinierende Welten – der Wissenschaftspodcast der HU Berlin

[Play in new window]
[Link]

Der Chemiker Michael Bojdys vom Institut für Chemie der HU entwickelt jetzt Konzepte für eine in der Krise widerstandsfähige Lehre.

Folge 10: „Die Wissenschaft bleibt nicht stehen“ – Der Chemiker Michael Bojdys im Gespräch mit der Radiojournalistin Cora Knoblauch.

Die Humboldt-Universität befindet sich derzeit aufgrund der Coronavirus-Pandemie – wie alle anderen Wissenschaftsbetriebe der Stadt – im Präsenznotbetrieb. Die Gebäude der Universität sind verschlossen – so auch das Institut für Chemie – und nicht alle Mitarbeiterinnen und Mitarbeiter der HU haben Zutritt. Der Chemiker und Forscher Michael Bojdys hält daher Kontakt zu seiner Arbeitsgruppe und seinen Studierenden über digitale Plattformen.

In der zehnten Folge des HU Wissenschaftspodcast spricht die Radiojournalistin Cora Knoblauch mit Michael Bojdys über eine in der Krise widerstandsfähige Lehre und darüber, welche Chancen und Herausforderungen die derzeitige Situation für junge Wissenschaftlerinnen und Wissenschaftler bietet. Außerdem berichtet Bojdys, wie die Chemikerinnen und Chemiker der HU derzeit den öffentlichen Dienst in Berlin mit Desinfektionsmitteln versorgen.

bojdysLAB bei Galileo

DIE NOBELPREIS-JACKE – WAS KANN GRAPHEN-KLEIDUNG?

Graphen gilt als echtes Wundermaterial. Es leitet Strom, ist extrem widerstandsfähig und speichert Wärme. Kein Wunder also, dass auch die Modeindustrie den Stoff für sich entdeckt hat. Doch hält die Wunderjacke auch, was sie verspricht?

ProSieben Video

Sulfur- and nitrogen-containing porous donor-acceptor polymers as real-time optical and chemical sensors

Kochergin, Y. S.; Noda, Y; Kulkarni, R.; Škodáková, K.; Tarábek, J.; Schmidt, J.; Bojdys,* M. J. Macromolecules 2019. DOI: 10.1021/acs.macromol.9b01643 [OPEN ACCESS] [PREPRINT]

Fully aromatic, organic polymers have the advantage of being composed from light, abundant elements, and are hailed as candidates in electronic and optical devices “beyond silicon”, yet, applications that make use of their π-conjugated backbone and optical bandgap are lacking outside of heterogeneous catalysis. Herein, we use a series of sulfur- and nitrogen-containing porous polymers (SNPs) as real-time optical and electronic sensors reversibly triggered and re-set by acid and ammonia vapors. Our SNPs incorporate donor-acceptor and donor-donor motifs in extended networks and enable us to study the changes in bulk conductivity, optical bandgap, and fluorescence life-times as a function of π-electron de-/localization in the pristine and protonated states. Interestingly, we find that protonated donor-acceptor polymers show a decrease of the optical bandgap by 0.42 eV to 0.76 eV and longer fluorescence life-times. In contrast, protonation of a donor-donor polymer does not affect its bandgap; however, it leads to an increase of electrical conductivity by up to 25-fold and shorter fluorescence life-times. The design strategies highlighted in this study open new avenues towards useful chemical switches and sensors based on modular purely organic materials.

DOI: 10.1021/acs.macromol.9b01643

A π‐conjugated, covalent phosphinine framework

Huang, J.; Tarábek, J.; Kulkarni, R.; Wang, C.; Dračínský, M.; Smales, G. J.; Tian, Y.; Ren, S.; Pauw, B. R.; Resch-Genger, U.; Bojdys,* M. J. Chem. Eur. J. 2019. DOI: 10.1002/chem.201900281 [OPEN ACCESS]

Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si and S have found their way into their building blocks so far. Here, we expand the toolbox available to polymer and materials chemists by one additional nonmetal, phosphorus. Starting with a building block that contains a λ5‐phosphinine (C5P) moiety, we evaluate a number of polymerisation protocols, finally obtaining a π‐conjugated, covalent phosphinine‐based framework (CPF‐1) via Suzuki‐Miyaura coupling. CPF‐1 is a weakly porous polymer glass (72.4 m2 g-1 N2 BET at 77 K) with green fluorescence (λmax 546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co‐catalyst at a rate of 33.3 μmol h-1 g-1. Our results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine‐based frameworks show promising electronic and optical properties that might spark future interest in their applications in light‐emitting devices and heterogeneous catalysis.

DOI: 10.1002/chem.201900281

Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework

Kulkarni, R.; Noda, Y.; Barange, D. K.; Kochergin, Y. S.; Lyu, P.; Balcarova, B.; Nachtigall, P.; Bojdys,* M. J. Nat. Commun. 2019. DOI: 10.1038/s41467-019-11264-z [OPEN ACCESS] [Source File]

Press-release @hu-berlin.de [DE]
Press-release @iris-adlershof.de [EN/DE]

Fully-aromatic, two-dimensional covalent organic frameworks (2D COFs) are hailed as candidates for electronic and optical devices, yet to-date few applications emerged that make genuine use of their rational, predictive design principles and permanent pore structure. Here, we present a 2D COF made up of chemoresistant β-amino enone bridges and Lewis-basic triazine moieties that exhibits a dramatic real-time response in the visible spectrum and an increase in bulk conductivity by two orders of magnitude to a chemical trigger – corrosive HCl vapours. The optical and electronic response is fully reversible using a chemical switch (NH3 vapours) or physical triggers (temperature or vacuum). These findings demonstrate a useful application of fully-aromatic 2D COFs as real-time responsive chemosensors and switches.

DOI: 10.1038/s41467-019-11264-z

bojdysLAB at WEF ‘Summer Davos’ Annual Meeting of New Champions

Press-release @erc-europa.eu [EN]
Press-release @hu-berlin.de [EN/DE]
Press-release @iris-adlershof.de [EN/DE]

Michael J. Bojdys joined the delegation of the European Research Council (ERC) composed of ERC President Prof. Jean-Pierre Bourguignon and ten ERC grantees at this year’s ‘Annual Meeting of New Champions’ hosted by the World Economic Forum. Dr. Bojdys summarizes his Community Session on “Strengthening Chemical and Materials Innovation Financing”:

“The WEF focused this year in particular on “Leadership 4.0” to deliver on sustainable development goals. The technology for sustainable electronics, smart energy storage, food security and healthier living is out there, sponsored by tax-payer’s money via the ERC, for example, who are supporting my research. But most scientists lack the business literacy to bring their projects to the market. WEF and ERC identify the need for (1) better business training of scientists – that means: can you deliver an “elevator pitch” on the impact of your research on society? Can you make the same pitch to funders? (2) Better funding instruments to develop prototype devices – here, the ERC is leading with the ERC “Proof of Concept” grant scheme that pays not only for prototype development but also for a market study, and (3) how can we help scientists find the right type of funders for their pre-IPO [initital public offering] projects – an exciting new initiative by the ERC is the “Virtual Ventures Fair” [More…] that aims to bring scientists that succesfully resolved their “Proof of Concept” grants together with investors. I am particularly looking forward to work together with the new leadership of the ERC on the “Virtual Ventures Fair” project – if there’s anything we know as scientists, then it is to contribute expert opinions via peer-review.”

Directional charge transport in layered, two‐dimensional triazine‐based graphitic carbon nitride

Noda, Y.; Merschjann, C.; Tarábek, J.; Amsalem, P.; Koch, N.; Bojdys,* M. J. Angew. Chem., Int. Ed. 2019. DOI: 10.1002/anie.201902314 [OPEN ACCESS]

Press-release @adlershof.de [EN/DE]

Press-release @iris-adlershof.de [EN/DE]

Triazine‐based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene‐type, two‐dimensional and metal‐free materials. Although hailed as a promising low‐bandgap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction‐dependent electrical measurements and time‐resolved optical spectroscopy to determine macroscopic conductivity and microscopic charge carrier mobilities in this layered material “beyond graphene”. Electrical conductivity along the basal plane of TGCN is 65‐times lower than through the stacked layers; as opposed to graphite. Furthermore, we develop a model for this charge transport behavior based on observed carrier dynamics and random‐walk simulations. Our combined methods provide a path towards intrinsic charge transport in a direction‐dependent, layered semi‐conductor for applications in field‐effect transistors (FETs) and sensors.

DOI: 10.1002/anie.201902314

bojdysLAB