OC2

Synthesis

Putting Things Together & Introduction to Alcohols

Dr. Michael J. Bojdys

michael.bojdys@kcl.ac.uk http://bojdyslab.org @mjbojdys

History of Organic Synthesis

Alcohols and Amines in Some Common Organic Compounds

Pain killers (Analgesics)

Dyestuffs

Flavour compounds ("aromatics")

Biology

Palanil(R)

Nucleophilic Addition to the Carbonyl Group

Mechanism of addition

Orbitals: Trajectory:

Hydration of Carbonyls

Carbonyl compounds, especially aldehydes, are prone to hydration:

$$H_2O:$$
 $H_2O:$
 $H_2O:$
 $H_1O \longrightarrow H_1O \longrightarrow H_1O$

Effects that influence the equilibrium:

Borohydride Reduction

NaBH₄ is the standard reducing agent for aldehydes and ketones:

$$\begin{array}{cccc}
H & & 1) \text{ NaBH}_4 \\
R & & 2) \text{ H}_3\text{O} & & R
\end{array}$$

- solvent is usually H₂O/EtOH
- Effectively "H⁽⁻⁾" attack, but never draw as this!
- Aldehydes react faster than ketones.

NOTE: LiAlH₄ is a much more reactive reducing agent, but will react violently with H₂O!

Mechanism of addition

Orbitals:

Organometallics as Carbon Nucleophiles

Organometallic reagents contain a C–Metal bond:

Consider the electronegativities of C, Li and Mg:

С	Li	Mg
2.5	1.0	1.2

Reaction of organolithium reagents:

Example 1

Orbitals:

Preparation:

$$R-X + 2 Li \longrightarrow R-Li + LiX$$

 $X = CI, Br, I$

Organometallics as Carbon Nucleophiles

Grignard reagents

$$X = CI, Br, I$$

Preparation:

$$\begin{array}{ccc} & & \text{Mg} \\ \text{R-X} & & \longrightarrow & \text{R-Mg-X} \\ & \text{in Et}_2\text{O} & & \\ & \text{or} & & \\ & \text{in THF} & & \end{array}$$

Reaction of Grignard reagents

With aldehydes:

 \oplus

Mgl

With ketones:

$$\begin{array}{cccc}
O & i) \text{ MeMgI} & HO \\
R & ii) H_3O & R & R
\end{array}$$

With carbon dioxide:

What's next?

Reactivity of Alcohols