0C2

Radicals & Polymerisation

Radical Stability, Selectivity and Radical Chain Reactions

Dr. Michael J. Bojdys

michael.bojdys@kcl.ac.uk http://bojdyslab.org @mjbojdys

Radical Stability

Simple rule: any substituent stabilises a radical!

 $\begin{array}{ccc} H & \stackrel{\bullet}{\longrightarrow} H \\ H & \stackrel{\bullet}{\longrightarrow} H \\ H & H \end{array} \qquad \qquad H \end{array}$

C-centred radicals are trigonal (sp²)

Primary, secondary and tertiary radicals

Radicals stabilised by conjugation

Radical Stability

Radicals stabilised by electron-withdrawing groups

 $\Delta G C-H (kJ mol^{-1})$ $\Delta G C-H (kJ mol^{-1})$ \cap N 360 385 Н Η

C-centred radicals are trigonal (sp²)

Radical Stability

Radicals stabilised by electron-donating groups

 $\Delta G C-H (kJ mol⁻¹)$ $R^{-0} H 385$ $R^{-N} H$

TEMPO a stable radical

Radical Chain Reactions

Consider the radical reaction of isobutene with hydrogen bromide

(1) Initiation

(a) **Homolysis** of dialkyl peroxide to alkoxy radicals

(b) **Abstraction** of H from HBr (radical substitution) to give Br•

(2) Propagation

(a) Br• adds to isobutene to give carbon-centred (more stable) radical

(b) carbon-centred radical abstracts H from HBr to yield product and regenerate Br•

(3) Termination

Selectivity in Radical Chain Reactions

(1) Initiation

(2) Propagation

(3) Termination

Radical halogenation of other alkenes

Radical Bromination

Selective Radical Bromination by NBS (N-Bromo Succinimide)

With NBS: Only enough bromine is formed to react with the (allylic or benzylic) radical

Other reactions with bromine are avoided

'Pinacol' Dimerisation of Ketones

Mg ideal as two-electron donating metal forming strong Mg–O bonds

Pinacol rearrangement converts 1,2-diol to a carbonyl compound

What's next?

Radical Polymerisations and other Radical Reactions

