

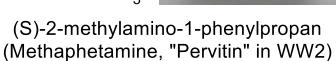
KING'S College LONDON

Synthesis

Introduction to Amines

Dr. Michael J. Bojdys

michael.bojdys@kcl.ac.uk http://bojdyslab.org @mjbojdys

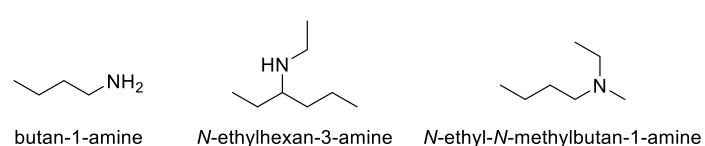

Amines

Hist. "alkaloids" – naturally occurring compounds with at least one N-atom

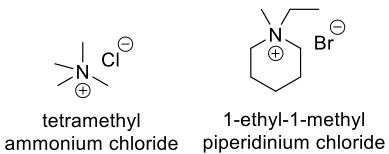
Liebig's "Melon" (1834)

(isolated from opium poppy, 1804)

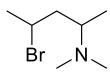
primary methylamine secondary dimethylamine tertiary


trimethylamine

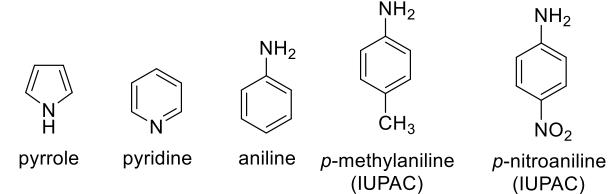
quaternary $H_3C^{\leftarrow} CH_3$ tetramethyl ammonium bromide


Compare: alcohols

Nomenclature of Amines

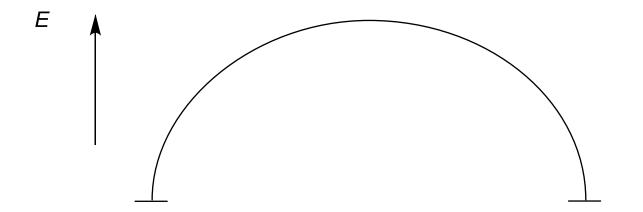

- alkyl group with the suffix "–amine"
- numbering usually before the "–amin" suffix (sometimes before the alkyl)
- nitrogen-bonded alkyl groups are denoted with an italic "N"

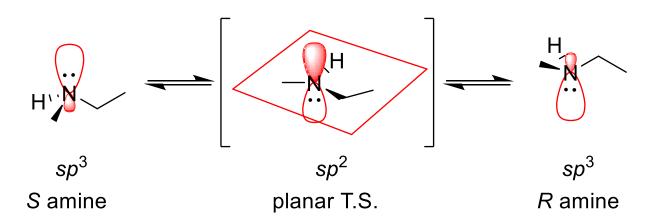
 quaternary amines are named as salts of the corresponding amine



 chose the lowest possible numbering (in relation to the N-atom)

4-bromo-N,N-dimethylpentan-2-amine


in aromatic systems

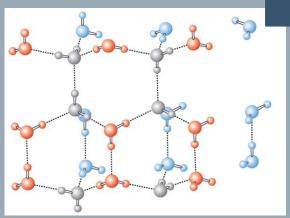


Geometry and Orbitals of Amines

Consider the free electron pair as a "fourth group" → tetrahedral arrangement around N-atom (chiral?)

In practice, rapid interconversion between amine enantiomers (low energy barrier):

Exceptions:


locked cyclic systems

$$R \stackrel{\frown}{\searrow} N \stackrel{\frown}{\searrow} R$$

quaternary salts

Physical Properties of Amines

Hydrogen bonding

frozen water is a 3dimensional network of H₂O-molecules

Seen in polar, protic compounds:

$$\begin{bmatrix} H & H \\ O & H & H \end{bmatrix}^{+} & \begin{bmatrix} O & H & O \\ H & H \end{bmatrix}^{-} \\ [H_{3}O]^{+} + H_{2}O & H_{2}O + [OH]^{-} \end{bmatrix}^{-}$$

$$\begin{bmatrix} H & H \\ H - N & H & N - H \\ H & H \end{bmatrix}^{+} & \begin{bmatrix} O & H & O \\ R & O & H & O \end{bmatrix}^{-} \\ [NH_{4}]^{+} + NH_{3} & RCO_{2}H + [RCO_{2}]^{-} \end{bmatrix}^{-}$$

	H_3C-CH_3	H ₃ C-NH ₂	CH ₃ -OH
bp / °C	-88.6	-6.3	65.0
van der Waals	(+)	+	+
dipole-dipole	-	+	+
H-bonding	-	+	+

What's next?

Properties of Amines

Academic Insights #4

The last evening before the deadline

