0C2

Radicals & Polymerisation

Radical Polymerisation and other Radical Reactions

Dr. Michael J. Bojdys

michael.bojdys@kcl.ac.uk http://bojdyslab.org @mjbojdys

Reduction of Alkynes to *E*-alkenes

Birch Reduction

Birch's empirical rules:

For electron withdrawing groups $(EWGs) \rightarrow$ double-bond of the product avoids substituents

H EWG (e.g. -CO₂R) H H

For electron donating groups (EDGs) → the product has the maximum number of substituents on the double-bond

EDG H H (e.g. -OMe, -OH)

Reduction of α -, β -unsaturated Ketones

Reaction on trapped enolate

Hydroxylation of Alkanes

Occurs in Phase I metabolism as well as e.g. biosynthesis of cortisol

Radical Polymerisation

Cross-linked Polymers

(1) Ab initio: polymers are stiffened and strengthened by (small amounts of) cross-linkers

Some well-known Polymers

Monomer	Formula	Polymer	Applications
Ethylene	$H_2C=CH_2$	Polyethylene	Packaging, bottles
Propene (propylene)	$H_2C=CHCH_3$	Polypropylene	Mouldings, carpets
Chloroethylene (vinyl chloride)	H ₂ C=CHCI	Poly(vinyl chloride) (PVC), Tedlar	Insulations, pipes, records
Styrene	H ₂ C=CHPh	Polystyrene	Foam, mouldings
Tetrafluoroethylene	F ₂ C=CF ₂	Teflon	Gaskets, non-sticky coatings
Acrylonitrile	H ₂ C=CHCN	Orlon, Acrilan	Fibres
Methyl methacrylate	$H_2C=C(CH_3)CO_2CH_3$	Plexiglas, Lucite	Paint, sheets, mouldings
Vinyl acetate	H ₂ C=CHOC(O)CH ₃	Poly(vinyl acetate)	

Radical Dehalogenation with Tributyltin hydride (Bu₃SNH)

NOTE: *exo*-product (5-ring with 1° radical) formed two orders of magnitude faster than *endo*-product (6-ring with 2° radical)

Bond strengths and kinetics generally more important than radical stability!

What's next?

Synthesis

