Synthesis **Amine Synthesis** Dr. Michael J. Bojdys michael.bojdys@kcl.ac.uk http://bojdyslab.org @mjbojdys #### **Reactivity of Amines** Amines (aliphatic and aromatic) are prone to oxidation $$\begin{array}{c|c} & & \\$$ However. amines react quantitatively with strong acids to form water-soluble salts (for purification, and ox. stability): $$\nearrow$$ NH₂ + HCI $\xrightarrow{\text{H}_2\text{O}}$ \nearrow NH₃ + $\overset{\bigcirc}{\text{CI}}$ #### **Amine Synthesis** Might try alkylation of ammonia... or animonia... $$H_3C \longrightarrow H_3C H_3C$$... however, such alkylations rapidly lead to a mix of products: #### (1) Amine Synthesis #### Better routes: alkylation of phthalimide anion (Gabriel Method) • Alkylation of nitrile anion (by homologation; insertion of a e.g. a CH₂-group after reduction) # (2) Amine Synthesis alkylation of azide ion $$R \stackrel{\bigcirc}{\wedge}_{Br} \stackrel{\bigcirc}{N_3} \longrightarrow R \stackrel{\frown}{\wedge}_{N_{N_N} \ominus}$$ #### NOTE: Azide can open epoxides to make β-aminoalcohols #### (3) Amine Synthesis • reduction of amides (with strong reductants such as lithium aluminium hydride or borane (in the presence of Lewis Acids, e.g. BF₃ • OEt₂) $$NH_2$$ i) LiAlH₄, ether NH_2 O ii) H_3O^+ reduction of aromatic nitro-compounds $$F_{3}C$$ $$F$$ ## (4) Amine Synthesis Addition of nitrogen nucleophiles to aldehydes and ketones (with acid catalyst)... first, step-wise: • Or in one-pot using NaCNBH₃ or Na(OAc)BH₃ (i.e. with mild reducing agent that only reduces the imine): ### (5) Amine Synthesis Hofmann Elimination – thermal decomposition of quaternary ammonium hydroxide Regioselectivity – the least substituted alkene is the major product # (5) Amine Synthesis Hofmann Elimination – steric factors and orbital overlap Consider: What's next? # **Introduction to Protecting Groups** #### **Academic Insights #5** Applying my research to the real world