0C2

Synthesis

Introduction to Protecting Groups

Dr. Michael J. Bojdys

michael.bojdys@kcl.ac.uk http://bojdyslab.org @mjbojdys

Peptide Synthesis – Protecting Groups

Peptides are made up of many amino acids joined together:

Amide bond formation:

Consider $\overset{O}{R} \overset{V}{\xrightarrow{}} X$ to be the activated form of a carboxylic acid. For peptide synthesis there is a problem:

Protecting Groups for Amines

٠

٠

Boc-group: stable to most things except extreme heat and strong acids

FMoc-group: stable to all but basic conditions

• **CBz-group:** stable to most things

3

(e.g. TFA, CF_3CO_2H)

 H_2N^{-R}

Н

∠R

Protecting Groups for Alcohols

• Bz-group: stable to acid

• **Bn-group:** stable to most things

٠

TBDMS-group: stable to most things (except some acids)

Interconversion

eaving group a	bilities:		
	R⁻	R-H	
	R_2N^-	R ₂ N-H	
	RO-	RO-H	
	RCO_2^-	RCO ₂ -H	
	CI-	CI-H	

Thermodynamically one can therefore react acid chloride to form any of the other derivatives since Cl⁻ is a good leaving group (low in energy). Amines are good nucleophiles (high in energy) and can convert any derivative to amides:

.R"'

R"'

рКа

Properties of Amines compared to Alcohols

	R—OH	R—NH ₂	
as acid:	$R-OH \longrightarrow R-O^{\ominus} + H^{\oplus}$	$R-NH_2 \longrightarrow R-NH + H^{\oplus}$	
	pK _A (H ₂ O) = 15.7	pK _A (NH ₃) = 38	
as base:	$R-OH + H^{\oplus} \longrightarrow R-OH_2$	$R-NH_2 + H^{\oplus} \longrightarrow R-NH_3$	
	рК _В (Н ₂ О) = 15.7	рК _В (NH ₃) = 4.8	
as nucleophile:	$R - OH + R' - X \longrightarrow R - OH$	$R - NH_2 + R' - X \longrightarrow R - NH_2$	
	, - H [⊕]	, - H [⊕]	
	R' R-O	R' R—NH	
as electrophile:	$R-OH + H^{\oplus} \longrightarrow R-OH_2$		
		very rare	
	R−Y ← R		

6

What's next?

Revisions