Rational Extension of the Family of Layered, Covalent, Triazine-Based Frameworks with Regular Porosity

Bojdys,* M. J.; Jeromenok, J.; Thomas, A.; Antonietti, M. Advanced Materials 2010, 22, 2202-2205.

p2

A layered, covalent, triazine-based framework (CTF) was synthesized via the condensation of 2,6-naphthalenedicarbonitrile under ionothermal conditions. The polytrimerization of this bi functional carbon nitrile in zinc chloride at lower temperatures yields a well-ordered, close-packed framework. At elevated temperatures an amorphous, yet porous solid is obtained, which shows remarkable thermal stability (640 °C) and a high surface area (2255 m2 g−1 and 1.51 cm3 g−1).

DOI: 10.1002/adma.200903436 [Download]

This is the pre-peer reviewed version of the following article: Bojdys, M. J.; Jeromenok, J.; Thomas, A.; Antonietti, M. Advanced Materials 2010, 22, 2202-2205, which has been published in final form at [DOI: 10.1002/adma.200903436].

Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride

Bojdys, M. J.; Muller, J. O.; Antonietti, M.; Thomas,* A. Chemistry-A European Journal 2008, 14, 8177-8182.

p1

Herein we report the synthesis of a crystalline graphitic carbon nitride, or g-C3N4, obtained from the temperature-induced condensation of dicyandiamide (NH2C(=NH)NHCN) by using a salt melt of lithium chloride and potassium chloride as the solvent. The proposed crystal structure of this g-C3N4 species is based on sheets of hexagonally arranged s-heptazine (C6N7) units that are held together by covalent bonds between C and N atoms which are stacked in a graphitic, staggered fashion, as corroborated by powder X-ray diffractometry and high-resolution transmission electron microscopy.

DOI: 10.1002/chem.200800190 [Download]

This is the pre-peer reviewed version of the following article: Bojdys, M. J.; Muller, J. O.; Antonietti, M.; Thomas, A. Chemistry-A European Journal 2008, 14, 8177-8182, which has been published in final form at [DOI: 10.1002/chem.200800190].

bojdysLAB